Blastoid·verse

Published

Sun Sep 10, 2023 03:30:28-05:00

Abstract

We now report an optimized protocol for the efficient generation of large quantities of high-fidelity human blastoids from naive pluripotent stem cells. Side-by-side single-cell RNA sequencing revealed similarities and differences in transcriptome profiles between pre-implantation blastoids and blastocysts, as well as post-implantation cultures, and uncovered a population resembling early migratory trophoblasts during co-culture with endometrial stromal cells. This optimized protocol will facilitate broader use of human blastoids as an accessible, perturbable, scalable, and tractable model for human blastocysts.

Schematic Summary


Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk


Citation


Leqian Yu#, Deirdre Logsdon#, Carlos A. Pinzon-Arteaga#, Jialei Duan#, Toshihiko Ezashi#, Yulei Wei#, Ana Elisa Ribeiro Orsi, Seiya Oura, Lizhong Liu, Lei Wang, Kun Liu, Xiaoyun Ding, Linfeng Zhan, Junfei Zhang, Asrafun Nahar, Caitlen Stobbe, Mandy Katz-Jaffe, William B. Schoolcraft, Tao Tan, Gary C. Hon*, Ye Yuan*, Jun Wu*. (2023). Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk. Cell Stem Cell 30, 1246–1261.e9.
DOI: 10.1016/10.1016/j.stem.2023.08.002

Leqian Yu#, Toshihiko Ezashi#, Yulei Wei#, Jialei Duan#, Deirdre Logsdon, Linfeng Zhan, Asrafun Nahar, Carlos A. Pinzon Arteaga, Lizhong Liu, Caitlen Stobbe, Mandy Katz-Jaffe, William B Schoolcraft, Lei Wang, Tao Tan, Gary C. Hon*, Ye Yuan*, Jun Wu*. (2022). Large scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal crosstalk. bioRxiv, 2022.09.14.507946.
DOI: 10.1101/2022.09.14.507946


Datasets


In this manuscript, several human transcriptome data sets generated by different technologies were included. To minimize platform and processing differences, raw fastq files of public datasets were downloaded and re-processed.

Code
embedding |>
    dplyr::mutate(num_umis = Matrix::colSums(matrix_readcount_use[, cell])) |>
    dplyr::group_by(study, batch) |>
    dplyr::summarise(
        num_cells = dplyr::n(),
        median_umis = median(num_umis)
    ) |>
    gt::gt(groupname_col = "study") |>
    gt::row_group_order(
        groups = c(
            "This study",
            "Yu et al. 2021",
            "Petropoulos et al. 2016",
            "Zheng et al. 2019",
            "Xiang et al. 2020",
            "Yanagida et al. 2021",
            "Tyser et al. 2021"
        )
    ) |>
    gt::data_color(
        columns = c(median_umis),
        fn = scales::col_numeric(
            palette = c(
                "green", "orange", "red"
            ),
            domain = NULL
        )
    ) |>
    gt::fmt_number(
        columns = c(median_umis),
        sep_mark = ",",
        decimals = 1,
        use_seps = TRUE,
        suffixing = FALSE
    ) |>
    gt::fmt_number(
        columns = c(num_cells),
        sep_mark = ",",
        decimals = 0,
        use_seps = TRUE,
        suffixing = FALSE
    ) |>
    gt::grand_summary_rows(
        columns = c(num_cells),
        fns = list(
            Sum = ~ sum(.)
        ),
        fmt = ~ gt::fmt_number(., decimals = 0, use_seps = TRUE)
    ) |>
    gt::tab_header(
        title = gt::md("**Dataset Summary**"),
        subtitle = gt::md("Human single-cell datasets used in this study")
    ) |>
    gt::cols_label(
        "batch" = gt::md("**Batch**"),
        "num_cells" = gt::md("**Num of cells**"),
        "median_umis" = gt::md("**Median UMIs**")
    )
Dataset Summary
Human single-cell datasets used in this study
Batch Num of cells Median UMIs
This study
LW119 2,236 2,956.5
LW120 435 17,392.0
LW121 5,130 12,536.0
LW122 287 100,092.0
LW186 10,977 3,026.0
LW187 3,690 4,980.0
LW188 6,838 3,738.0
LW189 3,250 5,344.0
LW202 4,833 3,834.0
LW203 2,571 5,254.0
LW204 7,596 2,405.0
Yu et al. 2021
LW60 4,497 14,421.0
LW61 5,156 7,625.0
Petropoulos et al. 2016
PRJEB11202 1,529 1,551,093.0
Zheng et al. 2019
GSM3956280 5,454 23,322.0
GSM3956281 4,512 27,887.0
Xiang et al. 2020
PRJNA562548 555 10,165,004.0
Yanagida et al. 2021
PRJNA720968 495 7,690,661.0
Tyser et al. 2021
PRJEB40781 1,195 899,241.0
Sum 71,236


Location