Single cell transcriptomes of human EP-structures generated by Sozen et al., 2021
2022-01-25
Sozen, B., Jorgensen, V., Weatherbee, B.A.T., Chen, S., Zhu, M., and Zernicka-Goetz, M. (2021). Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat. Commun. 12, 1–13.
- BioProject Accession: PRJNA738498
- GEO Accession: GSE178326
Load required packages.
Sys.time()
[1] "2022-01-25 01:39:15 CST"
Data preparation
Functions loading
Data loading
PROJECT_DIR <- "/Users/jialei/Dropbox/Data/Projects/UTSW/Peri-implantation"
Matrix
BACKED <- NULL
adata <- ad$read_h5ad(
filename = file.path(
PROJECT_DIR,
"raw/public/PRJNA738498",
"matrix",
"adata.h5ad"
),
backed = BACKED
)
matrix_readcount_use <- adata |> convert_adata()
dim(matrix_readcount_use)
[1] 33538 6231
Embedding
EMBEDDING_FILE <- "embedding_ncomponents18_ccc1_seed20210719.csv.gz"
embedding <- vroom::vroom(
file = file.path(
PROJECT_DIR,
"raw/public/PRJNA738498/",
"clustering/PRJNA738498/exploring/2021-11-12/Scanpy_Harmony",
EMBEDDING_FILE
)
)
Rows: 4840 Columns: 16
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): cell, batch
dbl (14): louvain, leiden, x_tsne, y_tsne, x_umap, y_umap, x_fitsne, y_fitsn...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
cell | batch | louvain | leiden | x_tsne | y_tsne | x_umap | y_umap | x_fitsne | y_fitsne | x_phate | y_phate | x_umap_min_dist=0.1 | y_umap_min_dist=0.1 | x_multicoretsne | y_multicoretsne |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GSM5387817_AAACCCAAGGTAAAGG | GSM5387817 | 1 | 0 | 22.552797 | -76.99979 | -1.8993253 | 12.636523 | -15.494342 | 51.689038 | -0.0211723 | -0.0004932 | -3.978256 | 11.463525 | 1.730775 | -2.397553 |
GSM5387817_AAACCCAAGTTGAAGT | GSM5387817 | 1 | 0 | 19.913122 | -73.46740 | -2.1883996 | 11.400636 | -11.716485 | 49.303629 | -0.0206319 | -0.0010031 | -4.190414 | 10.756096 | 1.549940 | -2.278008 |
GSM5387817_AAACCCACAAATCCCA | GSM5387817 | 4 | 1 | 6.317181 | -37.71603 | -3.8487771 | 8.504709 | 25.590685 | 36.332722 | -0.0188673 | -0.0016880 | -5.449766 | 8.731751 | 1.097940 | -1.886869 |
GSM5387817_AAACCCACAACCGTGC | GSM5387817 | 2 | 1 | 12.822221 | -38.25879 | -4.4371886 | 9.371312 | 21.998825 | 40.830924 | -0.0201961 | -0.0011995 | -5.751806 | 8.929660 | 1.347752 | -2.034147 |
GSM5387817_AAACCCACACAACATC | GSM5387817 | 2 | 1 | 17.348112 | -38.47583 | -3.6683993 | 10.983391 | 16.806704 | 48.373959 | -0.0193466 | -0.0013859 | -5.615176 | 9.830839 | 1.549798 | -2.219451 |
GSM5387817_AAACCCACATCGCTCT | GSM5387817 | 4 | 6 | -31.408867 | -59.78850 | 0.2084487 | 7.121182 | 5.117555 | 7.322763 | -0.0210226 | 0.0004796 | -2.895370 | 7.523944 | 0.502468 | -2.048530 |
Metadata
cell_metadata <- vroom::vroom(
file = file.path(
PROJECT_DIR,
"raw/public/PRJNA738498",
"matrix",
"cell_metadata.csv"
)
) |>
dplyr::mutate(
group = stringr::str_remove(
string = sample_id,
pattern = "-.+$"
),
group = case_when(
group == "2D" ~ "hEPSCs in 2D",
group == "D5" ~ "Day 5 hEP-structures",
group == "D6" ~ "Day 6 hEP-structures",
group == "unknown" ~ "hEPSCs, unknown",
is.na(group) ~ "Natural human embryos"
),
group = factor(
group,
levels = c(
"Natural human embryos",
"Day 5 hEP-structures",
"Day 6 hEP-structures",
"hEPSCs in 2D",
"hEPSCs, unknown"
)
)
) |>
dplyr::left_join(
adata$obs |>
tibble::rownames_to_column(var = "cell") |>
dplyr::select(-batch),
by = c("cell" = "cell")
)
# cell_metadata$sample_id |> table(exclude = "")
# cell_metadata$developmental_stage |> table(exclude = "")
# cell_metadata |> dplyr::count(group)
cell_metadata |>
dplyr::count(group, name = "num_cells") |>
gt::gt() |>
gt::tab_options(table.font.size = "median") |>
gt::summary_rows(
columns = c(num_cells),
fns = list(
Sum = ~ sum(.)
),
decimals = 0
)
group | num_cells | |
---|---|---|
Natural human embryos | 542 | |
Day 5 hEP-structures | 2013 | |
Day 6 hEP-structures | 2057 | |
hEPSCs in 2D | 228 | |
hEPSCs, unknown | 1391 | |
Sum | — | 6,231 |
dim(cell_metadata)
[1] 6231 9
Raw fastq files of this dataset were downloaded and re-processed as described in Yu et al. 2021 to minimize platform and processing differences.
The expression matrix was re-generated from raw fastq files. To make this analysis comparable with the original publication, the same cell ids are retrieved.
purrr::walk(list(matrix_readcount_use, cell_metadata), \(x) {
print(object.size(x), units = "auto", standard = "SI")
})
134.8 MB
901 kB
Single-cell transcriptome analysis
embedding |>
dplyr::group_by(
group
) |>
dplyr::summarise(
num_cells = n(),
median_umis = median(num_umis),
median_features = median(num_features),
median_mt_percentage = median(mt_percentage)
) |>
gt::gt() |>
gt::tab_options(table.font.size = "median") |>
gt::summary_rows(
columns = c("num_cells"),
fns = list(
Sum = ~ sum(.)
),
decimals = 0
) |>
gt::summary_rows(
columns = c(median_umis:median_mt_percentage),
fns = list(
Mean = ~ mean(.)
),
decimals = 2
)
group | num_cells | median_umis | median_features | median_mt_percentage | |
---|---|---|---|---|---|
Natural human embryos | 542 | 1525.0 | 788 | 0.07816558 | |
Day 5 hEP-structures | 2013 | 3916.0 | 1542 | 0.05452046 | |
Day 6 hEP-structures | 2057 | 5634.0 | 2146 | 0.04631579 | |
hEPSCs in 2D | 228 | 4658.5 | 1740 | 0.07582252 | |
Sum | — | 4,840 | — | — | — |
Mean | — | — | 3,933.38 | 1,554.00 | 0.06 |
embedding |>
dplyr::group_by(
leiden
) |>
dplyr::summarise(
num_cells = n(),
median_umis = median(num_umis),
median_features = median(num_features),
median_mt_percentage = median(mt_percentage)
) |>
gt::gt() |>
gt::tab_options(table.font.size = "median")
leiden | num_cells | median_umis | median_features | median_mt_percentage |
---|---|---|---|---|
0 | 650 | 7229.0 | 2548.0 | 0.044980507 |
1 | 575 | 5098.0 | 2001.0 | 0.047900969 |
2 | 519 | 4596.0 | 1750.0 | 0.055059253 |
3 | 486 | 3592.5 | 1367.5 | 0.053230059 |
4 | 467 | 1615.0 | 828.0 | 0.076511094 |
5 | 381 | 5207.0 | 1995.0 | 0.045398773 |
6 | 331 | 5504.0 | 2094.0 | 0.044977861 |
7 | 329 | 5760.0 | 2061.0 | 0.053837597 |
8 | 259 | 563.0 | 293.0 | 0.286012526 |
9 | 252 | 2873.5 | 1286.0 | 0.051105461 |
10 | 212 | 4263.0 | 1723.5 | 0.087807433 |
11 | 172 | 3567.5 | 1502.5 | 0.055306764 |
12 | 96 | 4089.0 | 1676.5 | 0.043022000 |
13 | 83 | 1504.0 | 798.0 | 0.163967611 |
14 | 17 | 5581.0 | 1828.0 | 0.062293144 |
15 | 11 | 825.0 | 347.0 | 0.001129944 |
Embedding visualization
x_column <- "x_umap_min_dist=0.1"
y_column <- "y_umap_min_dist=0.1"
GEOM_POINT_SIZE <- 0.4
EMBEDDING_TITLE_PREFIX <- "UMAP"
RASTERISED <- TRUE
Clustering & UMI & MT
p_embedding_leiden <- plot_embedding(
embedding = embedding[, c(x_column, y_column)],
color_values = embedding$leiden |> as.factor(),
label = paste(EMBEDDING_TITLE_PREFIX, "Leiden", sep = "; "),
label_position = NULL,
show_color_value_labels = TRUE,
show_color_legend = FALSE,
geom_point_size = GEOM_POINT_SIZE,
sort_values = FALSE,
rasterise = RASTERISED
) +
theme_customized()
CB_POSITION <- c(0.8, 0.325)
p_embedding_UMI <- plot_embedding(
embedding = embedding[, c(x_column, y_column)],
color_values = log10(embedding$num_umis),
label = paste(EMBEDDING_TITLE_PREFIX, "UMI", sep = "; "),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = TRUE,
geom_point_size = GEOM_POINT_SIZE * 1.5,
sort_values = TRUE,
shuffle_values = FALSE,
rasterise = RASTERISED,
legend_size = 2
) +
theme_customized(
y = CB_POSITION[2],
legend_key_size = 2,
legend_text_size = 5
)
p_embedding_MT <- plot_embedding(
embedding = embedding[, c(x_column, y_column)],
color_values = embedding$mt_percentage,
label = paste(EMBEDDING_TITLE_PREFIX, "MT%", sep = "; "),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = TRUE,
geom_point_size = GEOM_POINT_SIZE * 1.5,
sort_values = TRUE,
shuffle_values = FALSE,
rasterise = RASTERISED,
legend_size = 2
) +
theme_customized(
y = CB_POSITION[2],
legend_key_size = 2,
legend_text_size = 5
)
purrr::reduce(
list(
p_embedding_leiden,
p_embedding_UMI,
p_embedding_MT
),
`+`
) +
patchwork::plot_layout(ncol = 3) +
patchwork::plot_annotation(
theme = theme(plot.margin = margin())
)
purrr::map(c(0.4, 0.6, 0.8), \(x) {
values <- embedding |>
dplyr::mutate(
value = case_when(
mt_percentage >= x ~ "1",
TRUE ~ "0"
)
) |>
dplyr::pull(value)
plot_embedding(
embedding = embedding[, c(x_column, y_column)],
color_values = values |> as.factor(),
label = glue::glue(
"{EMBEDDING_TITLE_PREFIX}; MT% >= {scales::percent(x)}; ",
"Cells: {sum(as.numeric(values))}"
),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = FALSE,
geom_point_size = GEOM_POINT_SIZE * 1.5,
sort_values = TRUE,
shuffle_values = FALSE,
rasterise = RASTERISED,
legend_size = 2
) +
theme_customized(
legend_key_size = 2,
legend_text_size = 5
) +
scale_color_manual(
values = c("grey70", "salmon")
)
}) |>
purrr::reduce(
`+`
) +
patchwork::plot_layout(ncol = 3) +
patchwork::plot_annotation(
theme = theme(plot.margin = margin())
)
Batch & group
p_embedding_batch <- plot_embedding(
embedding = embedding[, c(x_column, y_column)],
color_values = embedding$batch |> as.factor(),
label = paste(EMBEDDING_TITLE_PREFIX, "Batch", sep = "; "),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = TRUE,
geom_point_size = GEOM_POINT_SIZE,
sort_values = FALSE,
shuffle_values = TRUE,
rasterise = RASTERISED,
legend_size = 2
) +
theme_customized(
legend_key_size = 2,
legend_text_size = 5
)
p_embedding_group <- plot_embedding(
embedding = embedding[, c(x_column, y_column)],
color_values = embedding$group |> as.factor(),
label = paste(EMBEDDING_TITLE_PREFIX, "Group", sep = "; "),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = TRUE,
geom_point_size = GEOM_POINT_SIZE,
sort_values = FALSE,
rasterise = RASTERISED,
legend_size = 2
) +
theme_customized(
legend_key_size = 2,
legend_text_size = 5
)
values <- embedding |>
dplyr::mutate(
value = case_when(
num_features < 200 ~ "1",
TRUE ~ "0"
)
) |>
dplyr::pull(value)
p_embedding_low_complexity <- plot_embedding(
embedding = embedding[, c(x_column, y_column)],
color_values = values |> as.factor(),
label = paste(EMBEDDING_TITLE_PREFIX, "Genes < 200", sep = "; "),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = FALSE,
geom_point_size = GEOM_POINT_SIZE * 1.5,
sort_values = TRUE,
rasterise = RASTERISED,
legend_size = 2
) +
theme_customized(
legend_key_size = 2,
legend_text_size = 5
) +
scale_color_manual(
values = c("grey70", "salmon")
)
This is a re-creation of Fig. 5AB.
purrr::reduce(
list(
p_embedding_batch,
p_embedding_group,
p_embedding_low_complexity
),
`+`
) +
patchwork::plot_layout(ncol = 3) +
patchwork::plot_annotation(
theme = theme(plot.margin = margin())
)
Composition
p_barplot_composition_batch <- calc_group_composition(
data = embedding,
x = "leiden",
group = "batch"
) |>
dplyr::mutate(
leiden = factor(leiden)
) |>
plot_barplot(
x = "leiden",
y = "percentage",
z = "batch",
legend_ncol = 1
)
p_barplot_group <- calc_group_composition(
data = embedding,
x = "leiden",
group = "group"
) |>
dplyr::mutate(
leiden = factor(leiden)
) |>
plot_barplot(
x = "leiden",
y = "percentage",
z = "group",
legend_ncol = 1
)
p_barplot_combined <- list(
p_barplot_composition_batch,
p_barplot_group
) |>
purrr::reduce(`+`) +
patchwork::plot_layout(nrow = 2, guides = "collect") +
patchwork::plot_annotation(
theme = theme(plot.margin = margin())
)
p_barplot_combined
Expression
Embedding
FEATURES_SELECTED <- c(
"ENSG00000204531_POU5F1",
"ENSG00000111704_NANOG",
"ENSG00000171872_KLF17",
"ENSG00000186103_ARGFX",
#
"ENSG00000164736_SOX17",
"ENSG00000125798_FOXA2",
"ENSG00000136574_GATA4",
"ENSG00000134853_PDGFRA",
#
"ENSG00000179348_GATA2",
"ENSG00000070915_SLC12A3",
"ENSG00000165556_CDX2",
"ENSG00000007866_TEAD3"
)
purrr::map(FEATURES_SELECTED, \(x) {
selected_feature <- x
cat(selected_feature, "\n")
values <- log10(
calc_cpm(matrix_readcount_use[, embedding$cell])[
selected_feature,
] + 1
)
plot_embedding(
embedding = embedding[, c(x_column, y_column)],
color_values = values,
label = paste(
EMBEDDING_TITLE_PREFIX,
selected_feature |> stringr::str_remove(pattern = "^E.+_"),
sep = "; "
),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = TRUE,
geom_point_size = GEOM_POINT_SIZE * 1.5,
sort_values = TRUE,
shuffle_values = FALSE,
rasterise = RASTERISED,
legend_size = 2
) +
scale_color_viridis_c(
na.value = "grey80"
) +
theme_customized(
y = CB_POSITION[2],
legend_key_size = 2,
legend_text_size = 5
)
}) |>
purrr::reduce(`+`) +
patchwork::plot_layout(ncol = 3, byrow = FALSE) +
patchwork::plot_annotation(
theme = theme(plot.margin = margin())
)
ENSG00000204531_POU5F1
ENSG00000111704_NANOG
ENSG00000171872_KLF17
ENSG00000186103_ARGFX
ENSG00000164736_SOX17
ENSG00000125798_FOXA2
ENSG00000136574_GATA4
ENSG00000134853_PDGFRA
ENSG00000179348_GATA2
ENSG00000070915_SLC12A3
ENSG00000165556_CDX2
ENSG00000007866_TEAD3
R session info
devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.1.2 (2021-11-01)
os macOS Monterey 12.1
system aarch64, darwin20.6.0
ui unknown
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/Chicago
date 2022-01-25
pandoc 2.17.0.1 @ /opt/homebrew/bin/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.1.1)
backports 1.4.1 2021-12-13 [1] CRAN (R 4.1.2)
beeswarm 0.4.0 2021-06-01 [1] CRAN (R 4.1.2)
bit 4.0.4 2020-08-04 [1] CRAN (R 4.1.1)
bit64 4.0.5 2020-08-30 [1] CRAN (R 4.1.1)
brio 1.1.3 2021-11-30 [1] CRAN (R 4.1.2)
broom 0.7.11 2022-01-03 [1] CRAN (R 4.1.2)
cachem 1.0.6 2021-08-19 [1] CRAN (R 4.1.1)
callr 3.7.0 2021-04-20 [1] CRAN (R 4.1.1)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.1.1)
checkmate 2.0.0 2020-02-06 [1] CRAN (R 4.1.1)
cli 3.1.1 2022-01-20 [1] CRAN (R 4.1.2)
colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.1)
crayon 1.4.2 2021-10-29 [1] CRAN (R 4.1.1)
data.table 1.14.2 2021-09-27 [1] CRAN (R 4.1.1)
DBI 1.1.2 2021-12-20 [1] CRAN (R 4.1.2)
dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.1.1)
desc 1.4.0 2021-09-28 [1] CRAN (R 4.1.1)
devtools 2.4.3.9000 2022-01-22 [1] Github (r-lib/devtools@41280ac)
digest 0.6.29 2021-12-01 [1] CRAN (R 4.1.2)
dplyr * 1.0.7.9000 2022-01-12 [1] Github (tidyverse/dplyr@0501335)
dtplyr 1.2.1 2022-01-19 [1] CRAN (R 4.1.2)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.1.1)
evaluate 0.14 2019-05-28 [1] CRAN (R 4.1.1)
extrafont * 0.17 2014-12-08 [1] CRAN (R 4.1.1)
extrafontdb 1.0 2012-06-11 [1] CRAN (R 4.1.1)
fansi 1.0.2 2022-01-14 [1] CRAN (R 4.1.2)
farver 2.1.0 2021-02-28 [1] CRAN (R 4.1.1)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.1)
forcats * 0.5.1.9000 2021-11-29 [1] Github (tidyverse/forcats@b4dade0)
fs 1.5.2.9000 2021-12-09 [1] Github (r-lib/fs@6d1182f)
gargle 1.2.0 2021-07-02 [1] CRAN (R 4.1.1)
generics 0.1.1 2021-10-25 [1] CRAN (R 4.1.1)
ggbeeswarm 0.6.0 2017-08-07 [1] CRAN (R 4.1.2)
ggplot2 * 3.3.5 2021-06-25 [1] CRAN (R 4.1.1)
ggrastr 1.0.1 2021-12-08 [1] Github (VPetukhov/ggrastr@7aed9af)
glue 1.6.1.9000 2022-01-23 [1] Github (tidyverse/glue@3da70df)
googledrive 2.0.0 2021-07-08 [1] CRAN (R 4.1.1)
googlesheets4 1.0.0 2021-07-21 [1] CRAN (R 4.1.1)
gt 0.3.1.9000 2022-01-17 [1] Github (rstudio/gt@fcabb41)
gtable 0.3.0.9000 2021-10-28 [1] Github (r-lib/gtable@a0bd272)
haven 2.4.3 2021-08-04 [1] CRAN (R 4.1.1)
highr 0.9 2021-04-16 [1] CRAN (R 4.1.1)
hms 1.1.1 2021-09-26 [1] CRAN (R 4.1.1)
htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.1)
htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.1.1)
httr 1.4.2 2020-07-20 [1] CRAN (R 4.1.1)
jsonlite 1.7.3 2022-01-17 [1] CRAN (R 4.1.2)
knitr 1.37.1 2021-12-21 [1] https://yihui.r-universe.dev (R 4.1.2)
labeling 0.4.2 2020-10-20 [1] CRAN (R 4.1.1)
lattice 0.20-45 2021-09-22 [2] CRAN (R 4.1.2)
lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.1)
lubridate 1.8.0 2022-01-20 [1] Github (tidyverse/lubridate@566590f)
magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.1.1)
Matrix * 1.4-0 2021-12-08 [2] CRAN (R 4.1.2)
memoise 2.0.1 2021-11-26 [1] CRAN (R 4.1.2)
modelr 0.1.8.9000 2021-10-27 [1] Github (tidyverse/modelr@16168e0)
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.1)
patchwork * 1.1.0.9000 2021-10-27 [1] Github (thomasp85/patchwork@79223d3)
pillar 1.6.4 2021-10-18 [1] CRAN (R 4.1.1)
pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.1.2)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.1)
pkgload 1.2.4 2021-11-30 [1] CRAN (R 4.1.2)
png 0.1-7 2013-12-03 [1] CRAN (R 4.1.1)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.1.1)
processx 3.5.2 2021-04-30 [1] CRAN (R 4.1.1)
ps 1.6.0 2021-02-28 [1] CRAN (R 4.1.1)
purrr * 0.3.4 2020-04-17 [1] CRAN (R 4.1.1)
R.cache 0.15.0 2021-04-30 [1] CRAN (R 4.1.1)
R.methodsS3 1.8.1 2020-08-26 [1] CRAN (R 4.1.1)
R.oo 1.24.0 2020-08-26 [1] CRAN (R 4.1.1)
R.utils 2.11.0 2021-09-26 [1] CRAN (R 4.1.1)
R6 2.5.1.9000 2021-12-09 [1] Github (r-lib/R6@1b05b89)
ragg 1.2.1.9000 2021-12-08 [1] Github (r-lib/ragg@c68c666)
Rcpp 1.0.8 2022-01-13 [1] CRAN (R 4.1.2)
readr * 2.1.1 2021-11-30 [1] CRAN (R 4.1.2)
readxl 1.3.1.9000 2022-01-20 [1] Github (tidyverse/readxl@2ccb82c)
remotes 2.4.2 2022-01-24 [1] Github (r-lib/remotes@7b0ee01)
reprex 2.0.1 2021-08-05 [1] CRAN (R 4.1.1)
reticulate 1.23 2022-01-14 [1] CRAN (R 4.1.2)
rlang 1.0.0 2022-01-20 [1] Github (r-lib/rlang@f2fbaad)
rmarkdown 2.11.12 2022-01-24 [1] Github (rstudio/rmarkdown@b53a7ce)
rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.1.1)
rstudioapi 0.13.0-9000 2022-01-15 [1] Github (rstudio/rstudioapi@5d0f087)
Rttf2pt1 1.3.9 2021-07-22 [1] CRAN (R 4.1.1)
rvest 1.0.2 2021-10-16 [1] CRAN (R 4.1.1)
sass 0.4.0 2021-05-12 [1] CRAN (R 4.1.1)
scales 1.1.1 2020-05-11 [1] CRAN (R 4.1.1)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.1.2)
stringi 1.7.6 2021-11-29 [1] CRAN (R 4.1.2)
stringr * 1.4.0.9000 2022-01-24 [1] Github (tidyverse/stringr@85f6140)
styler * 1.6.2.9000 2022-01-17 [1] Github (r-lib/styler@9274aed)
systemfonts 1.0.3.9000 2021-12-07 [1] Github (r-lib/systemfonts@414114e)
testthat 3.1.2.9000 2022-01-21 [1] Github (r-lib/testthat@54b9db2)
textshaping 0.3.6 2021-10-13 [1] CRAN (R 4.1.1)
tibble * 3.1.6.9000 2022-01-18 [1] Github (tidyverse/tibble@7aa54e6)
tidyr * 1.1.4 2021-09-27 [1] CRAN (R 4.1.1)
tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.1.1)
tidyverse * 1.3.1.9000 2021-12-08 [1] Github (tidyverse/tidyverse@6186fbf)
tzdb 0.2.0 2021-10-27 [1] CRAN (R 4.1.1)
usethis 2.1.5.9000 2022-01-20 [1] Github (r-lib/usethis@57b109a)
utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.1)
vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.1.1)
vipor 0.4.5 2017-03-22 [1] CRAN (R 4.1.2)
viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.1.1)
vroom 1.5.7 2021-11-30 [1] CRAN (R 4.1.2)
withr 2.4.3 2021-11-30 [1] CRAN (R 4.1.2)
xfun 0.29 2021-12-14 [1] CRAN (R 4.1.2)
xml2 1.3.3 2021-11-30 [1] CRAN (R 4.1.2)
yaml 2.2.1 2020-02-01 [1] CRAN (R 4.1.1)
[1] /opt/homebrew/lib/R/4.1/site-library
[2] /opt/homebrew/Cellar/r/4.1.2/lib/R/library
─ Python configuration ───────────────────────────────────────────────────────
python: /Users/jialei/.pyenv/shims/python
libpython: /Users/jialei/.pyenv/versions/miniforge3-4.10.1-5/lib/libpython3.9.dylib
pythonhome: /Users/jialei/.pyenv/versions/miniforge3-4.10.1-5:/Users/jialei/.pyenv/versions/miniforge3-4.10.1-5
version: 3.9.5 | packaged by conda-forge | (default, Jun 19 2021, 00:24:55) [Clang 11.1.0 ]
numpy: /Users/jialei/.pyenv/versions/miniforge3-4.10.1-5/lib/python3.9/site-packages/numpy
numpy_version: 1.20.3
anndata: /Users/jialei/.pyenv/versions/miniforge3-4.10.1-5/lib/python3.9/site-packages/anndata
NOTE: Python version was forced by RETICULATE_PYTHON
──────────────────────────────────────────────────────────────────────────────