STAR, Salmon and Kallisto!
2022-01-24
Tyser, R.C.V., Mahammadov, E., Nakanoh, S., Vallier, L., Scialdone, A., and Srinivas, S. (2021). Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289.
- BioProject Accession: PRJEB40781
- AEArrayExpress Accession: E-MTAB-9388
Load required packages.
Sys.time()
[1] "2022-01-24 19:05:51 CST"
Data preparation
Functions loading
plot_embedding_highlight <- function(embedding, x, y, label, n_cols = 3) {
cell_metadata_selected <- x
selected_column <- y
purrr::map(levels(cell_metadata_selected[[selected_column]]), \(x) {
values <- embedding |>
dplyr::left_join(cell_metadata_selected) |>
dplyr::mutate(
value = case_when(
.data[[selected_column]] == x ~ "1",
.data[[selected_column]] != x ~ "0"
)
) |>
dplyr::pull(value) |>
as.integer() |>
as.factor()
plot_embedding(
embedding = embedding[, c(x_column, y_column)],
color_values = values,
label = glue::glue(
"{label}; ",
"{x}: {sum(as.integer(as.character(values)), na.rm = TRUE)}"
),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = FALSE,
geom_point_size = GEOM_POINT_SIZE,
sort_values = TRUE,
shuffle_values = FALSE,
rasterise = RASTERISED,
legend_size = 2
) +
theme_customized(
legend_key_size = 2,
legend_text_size = 5
) +
scale_color_manual(
na.translate = TRUE,
values = c("grey70", "salmon"),
na.value = "#7F7F7F"
) +
ggplot2::annotate(
geom = "text",
x = Inf,
y = Inf,
label = sum(as.integer(as.character(values)), na.rm = TRUE),
size = 5 / ggplot2::.pt,
hjust = 1,
vjust = 1,
na.rm = FALSE
)
}) |>
purrr::reduce(`+`) +
patchwork::plot_layout(ncol = n_cols) +
patchwork::plot_annotation(
theme = ggplot2::theme(plot.margin = ggplot2::margin())
)
}
Data loading
PROJECT_DIR <- "/Users/jialei/Dropbox/Data/Projects/UTSW/Peri-implantation"
Matrix
adata_files <- purrr::map(c("", "_salmon", "_kallisto"), \(x) {
file.path(
PROJECT_DIR,
"raw",
"public",
"PRJEB40781",
paste0("matrix", x),
"adata.h5ad"
)
})
purrr::map_lgl(adata_files, file.exists)
[1] TRUE TRUE TRUE
BACKED <- NULL
matrix_readcount_use <- purrr::map(adata_files, function(x) {
ad$read_h5ad(
filename = x, backed = BACKED
) |>
convert_adata()
})
names(matrix_readcount_use) <- c("star", "salmon", "kallisto")
purrr::map_int(matrix_readcount_use, ncol)
star salmon kallisto
1195 1195 1195
Metadata
BACKED <- "r"
cell_metadata <- purrr::map(adata_files, function(x) {
if (stringr::str_detect(x, pattern = "kallisto")) {
y <- "kallisto"
} else if (stringr::str_detect(x, pattern = "salmon")) {
y <- "salmon"
} else {
y <- "star"
}
ad$read_h5ad(
filename = x, backed = BACKED
)$obs |>
tibble::rownames_to_column(var = "cell") |>
dplyr::select(cell, everything()) |>
dplyr::mutate(method = y)
})
names(cell_metadata) <- c("star", "salmon", "kallisto")
purrr::map_int(cell_metadata, nrow)
star salmon kallisto
1195 1195 1195
Check memory usage.
purrr::walk(list(matrix_readcount_use, cell_metadata), function(x) {
print(object.size(x), units = "auto", standard = "SI")
})
203.6 MB
381.5 kB
STAR, Salmon, Kallisto
Cell metadata & embedding
EMBEDDING_FILE <- "embedding_ncomponents15_ccc1_seed20210719.csv.gz"
embedding_1195 <- purrr::map(c("star", "salmon", "kallisto"), \(x) {
vroom::vroom(
file = file.path(
PROJECT_DIR,
"raw/public/PRJEB40781",
"clustering/PRJEB40781/",
x,
"/exploring",
"Scanpy_Harmony",
EMBEDDING_FILE
)
) |>
dplyr::mutate(method = x)
}) |>
dplyr::bind_rows()
cell | batch | louvain | leiden | x_tsne | y_tsne | x_fitsne | y_fitsne | x_umap_min_dist=0.5 | y_umap_min_dist=0.5 | x_umap_min_dist=0.1 | y_umap_min_dist=0.1 | x_phate | y_phate | x_pacmap | y_pacmap | method |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERS5181934 | PRJEB40781 | 0 | 4 | -11.813729 | 51.55556 | -31.9981458 | 33.08672 | -2.8858435 | 4.266404 | -1.4608202 | 5.649869 | -0.0309265 | 0.0201407 | -26.585844 | 8.177488 | star |
ERS5181935 | PRJEB40781 | 1 | 5 | -40.629002 | 26.28880 | -1.1851437 | 42.71939 | -1.8841287 | 12.546277 | 1.1891274 | 13.144535 | -0.0408448 | 0.0005910 | 8.549566 | 4.448987 | star |
ERS5181936 | PRJEB40781 | 1 | 5 | -35.980461 | 17.89327 | 3.2214120 | 34.88544 | -0.0097796 | 11.680841 | 2.3955772 | 12.497228 | -0.0226495 | 0.0095925 | 7.491635 | 2.627760 | star |
ERS5181937 | PRJEB40781 | 0 | 4 | -7.327799 | 45.82777 | -32.1619202 | 26.77324 | -1.5390446 | 4.038341 | -0.6339243 | 5.905377 | -0.0366031 | 0.0086555 | -26.781113 | 10.432706 | star |
ERS5181938 | PRJEB40781 | 0 | 4 | -16.172386 | 43.02077 | -22.0980915 | 33.24122 | -2.4133680 | 6.631270 | -1.9704382 | 7.099248 | -0.0310294 | 0.0047329 | -24.548060 | 9.166805 | star |
ERS5181939 | PRJEB40781 | 1 | 5 | -34.458740 | 20.99207 | -0.1236553 | 35.16477 | -0.7037168 | 11.084229 | 1.9258376 | 12.283741 | -0.0283207 | 0.0038721 | 8.132697 | 2.670102 | star |
Visualization
x_column <- "x_umap_min_dist=0.1"
y_column <- "y_umap_min_dist=0.1"
GEOM_POINT_SIZE <- 1.25
EMBEDDING_TITLE_PREFIX <- "UMAP"
RASTERISED <- TRUE
Clustering
cell_metadata |>
dplyr::bind_rows() |>
dplyr::group_by(method) |>
dplyr::summarise(
num_cells = dplyr::n(),
median_umis = median(num_umis),
median_features = median(num_features),
median_mt_percentage = median(mt_percentage)
) |>
dplyr::mutate(
method = factor(
method,
levels = c("star", "salmon", "kallisto")
)
) |>
dplyr::arrange(method) |>
gt::gt()
method | num_cells | median_umis | median_features | median_mt_percentage |
---|---|---|---|---|
star | 1195 | 899241 | 4379 | 0.008164051 |
salmon | 1195 | 531492 | 4500 | 0.007394771 |
kallisto | 1195 | 553929 | 4949 | 0.007829904 |
purrr::map(c("star", "salmon", "kallisto"), \(x) {
plot_embedding(
embedding = embedding_1195[, c(x_column, y_column, "method")] |>
dplyr::filter(method == x),
color_values = embedding_1195$leiden[embedding_1195$method == x]
|> as.factor(),
label = paste(
EMBEDDING_TITLE_PREFIX,
paste(x, "embedding"),
paste(x, "clustering"),
sep = "; "
),
label_position = NULL,
show_color_value_labels = TRUE,
show_color_legend = FALSE,
geom_point_size = GEOM_POINT_SIZE,
sort_values = FALSE,
shuffle_values = TRUE,
rasterise = RASTERISED
) +
theme_customized()
}) |>
purrr::reduce(`+`) +
patchwork::plot_layout(ncol = 3) +
patchwork::plot_annotation(
theme = ggplot2::theme(plot.margin = ggplot2::margin())
)
purrr::map(c("star", "salmon", "kallisto"), \(x) {
embedding_star <- embedding_1195[, c(
x_column, y_column,
"method", "cell", "leiden"
)] |>
dplyr::filter(method == "star")
values <- embedding_1195[, c(
x_column, y_column,
"method", "leiden", "cell"
)] |>
dplyr::filter(method == x) |>
dplyr::left_join(
embedding_star |> dplyr::select(cell, leiden_star = leiden)
) |>
dplyr::pull(leiden_star)
plot_embedding(
embedding = embedding_1195[, c(x_column, y_column, "method")] |>
dplyr::filter(method == x),
color_values = values
|> as.factor(),
label = paste(
EMBEDDING_TITLE_PREFIX,
paste(x, "embedding"),
"star clustering",
sep = "; "
),
label_position = NULL,
show_color_value_labels = TRUE,
show_color_legend = FALSE,
geom_point_size = GEOM_POINT_SIZE,
sort_values = FALSE,
shuffle_values = TRUE,
rasterise = RASTERISED
) +
theme_customized()
}) |>
purrr::reduce(`+`) +
patchwork::plot_layout(ncol = 3) +
patchwork::plot_annotation(
theme = ggplot2::theme(plot.margin = ggplot2::margin())
)
Expression
purrr::map(c("star", "salmon", "kallisto"), \(x) {
plot_embedding(
embedding = embedding_1195[, c(x_column, y_column, "method")] |>
dplyr::filter(method == x),
color_values = embedding_1195[, c("method", "cell")] |>
dplyr::filter(method == x) |>
dplyr::left_join(
cell_metadata[[x]]
) |>
dplyr::pull(num_umis) |>
{
\(x) log10(x)
}(),
label = paste(
EMBEDDING_TITLE_PREFIX,
paste(x, "embedding"),
"UMI",
sep = "; "
),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = TRUE,
geom_point_size = GEOM_POINT_SIZE / 1.5,
sort_values = TRUE,
shuffle_values = FALSE,
rasterise = RASTERISED,
legend_size = 2
) +
theme_customized(
legend_key_size = 2,
legend_text_size = 5
)
}) |>
purrr::reduce(`+`) +
patchwork::plot_layout(ncol = 3) +
patchwork::plot_annotation(
theme = ggplot2::theme(plot.margin = ggplot2::margin())
)
FEATURES_SELECTED <- c(
"ENSG00000204531_POU5F1",
#
"ENSG00000164736_SOX17",
#
"ENSG00000179348_GATA2"
)
purrr::map(FEATURES_SELECTED, \(y) {
selected_feature <- y
purrr::map(c("star", "salmon", "kallisto"), \(x) {
values <- log10(
calc_cpm(
matrix_readcount_use[[x]][
,
embedding_1195$cell[embedding_1195$method == x]
]
)[selected_feature, ] + 1
)
plot_embedding(
embedding = embedding_1195[, c(x_column, y_column, "method")] |>
dplyr::filter(method == x),
color_values = values,
label = paste(
EMBEDDING_TITLE_PREFIX,
paste(x, "embedding"),
x,
selected_feature |> stringr::str_remove(pattern = "^.+_"),
sep = "; "
),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = TRUE,
geom_point_size = GEOM_POINT_SIZE / 1.5,
sort_values = TRUE,
shuffle_values = FALSE,
rasterise = RASTERISED,
legend_size = 2
) +
theme_customized(
legend_key_size = 2,
legend_text_size = 5
)
})
}) |>
unlist(recursive = FALSE) |>
purrr::reduce(`+`) +
patchwork::plot_layout(ncol = 3) +
patchwork::plot_annotation(
theme = ggplot2::theme(plot.margin = ggplot2::margin())
)
purrr::map(FEATURES_SELECTED, \(y) {
selected_feature <- y
embedding_star <- embedding_1195[, c(
x_column, y_column,
"method", "cell", "leiden"
)] |>
dplyr::filter(method == "star")
purrr::map(c("star", "salmon", "kallisto"), \(x) {
values <- log10(
calc_cpm(
matrix_readcount_use[[x]][, embedding_star$cell]
)[selected_feature, ] + 1
)
plot_embedding(
embedding = embedding_star,
color_values = values,
label = paste(
EMBEDDING_TITLE_PREFIX,
"star embedding",
x,
selected_feature |> stringr::str_remove(pattern = "^.+_"),
sep = "; "
),
label_position = NULL,
show_color_value_labels = FALSE,
show_color_legend = TRUE,
geom_point_size = GEOM_POINT_SIZE / 1.5,
sort_values = TRUE,
shuffle_values = FALSE,
rasterise = RASTERISED,
legend_size = 2
) +
theme_customized(
legend_key_size = 2,
legend_text_size = 5
)
})
}) |>
unlist(recursive = FALSE) |>
purrr::reduce(`+`) +
patchwork::plot_layout(ncol = 3) +
patchwork::plot_annotation(
theme = ggplot2::theme(plot.margin = ggplot2::margin())
)
FEATURES_SELECTED <- c(
"ENSG00000204531_POU5F1",
"ENSG00000111704_NANOG",
"ENSG00000171872_KLF17",
"ENSG00000186103_ARGFX",
#
"ENSG00000164736_SOX17",
"ENSG00000125798_FOXA2",
"ENSG00000136574_GATA4",
"ENSG00000134853_PDGFRA",
#
"ENSG00000179348_GATA2",
"ENSG00000070915_SLC12A3",
"ENSG00000165556_CDX2",
"ENSG00000007866_TEAD3"
)
plot_violin(
cells = embedding_1195 |>
split(~method) |>
purrr::map(
\(x) {
x |> dplyr::mutate(cell = paste(method, cell, sep = "_"))
} |>
dplyr::pull(cell)
) |>
{
\(x) x[c("star", "salmon", "kallisto")]
}(),
features = FEATURES_SELECTED,
matrix_cpm = calc_cpm(purrr::map(names(matrix_readcount_use), \(x) {
colnames(matrix_readcount_use[[x]]) <-
paste(x,
colnames(matrix_readcount_use[[x]]),
sep = "_"
)
return(matrix_readcount_use[[x]])
}) |>
purrr::reduce(cbind)),
y_title = "Aligner/Mapper",
strip_text_size = 6
) +
theme_grey(base_size = 6) %+replace%
ggplot2::theme(
axis.title.y = ggplot2::element_text(
family = "Arial",
size = 6,
angle = 90,
margin = ggplot2::margin(
t = 0, r = 1, b = 0, l = 0,
unit = "mm"
)
),
)
pairs <- combn(c("star", "salmon", "kallisto"), 2)
purrr::map(seq_len(ncol(pairs)), \(x) {
aa <- pairs[, x, drop = TRUE][1]
bb <- pairs[, x, drop = TRUE][2]
a <- rowMeans(calc_cpm(matrix_readcount_use[[aa]]))
b <- rowMeans(calc_cpm(matrix_readcount_use[[bb]]))
a <- log10(a + 1)
b <- log10(b + 1)
corr <- cor(a, b, method = "spearman")
ggplot2::ggplot(
data = NULL,
ggplot2::aes(
x = a,
y = b
)
) +
# geom_point() +
ggpointdensity::geom_pointdensity(alpha = 0.3, na.rm = TRUE) +
ggplot2::scale_x_continuous(
name = glue::glue(
"<span style='color:red'>**{aa}**</span>; ",
"log<sub>10</sub> CPM + 1"
)
) +
ggplot2::scale_y_continuous(
name = glue::glue(
"<span style='color:red'>**{bb}**</span>; ",
"log<sub>10</sub> CPM + 1"
)
) +
ggplot2::coord_fixed() +
ggplot2::geom_abline(color = "salmon") +
ggplot2::labs(color = "Density") +
ggplot2::theme_bw(base_size = 6) %+replace%
ggplot2::theme(
axis.title.x = ggtext::element_markdown(
# axis.title = ggtext::element_textbox(
family = "Arial",
size = 7,
margin = ggplot2::margin(
t = 1, r = 0, b = 0, l = 0,
unit = "mm"
)
),
axis.title.y = ggtext::element_markdown(
family = "Arial",
size = 7,
angle = 90,
margin = ggplot2::margin(
t = 0, r = 1, b = 0, l = 0,
unit = "mm"
)
),
#
legend.background = ggplot2::element_blank(),
legend.margin = ggplot2::margin(
t = 0, r = 0, b = 0, l = 0, unit = "mm"
),
legend.key = ggplot2::element_blank(),
legend.key.size = grid::unit(2, "mm"),
legend.text = ggplot2::element_text(
family = "Arial",
size = 5,
margin = ggplot2::margin(
t = 0, r = 0, b = 0, l = -0.5,
unit = "mm"
)
),
#
legend.position = c(0.825, 0.3),
legend.justification = c(0, 1)
) +
ggtext::geom_richtext(
ggplot2::aes(
x = 0,
y = 4
),
label = paste("***ρ*** =", round(corr, 3)),
fill = NA,
family = "Arial",
size = 5 / ggplot2::.pt,
hjust = 0,
vjust = 1
)
}) |>
purrr::reduce(`+`) +
patchwork::plot_layout(nrow = 1) +
patchwork::plot_annotation(
theme = ggplot2::theme(plot.margin = ggplot2::margin())
)
R session info
devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.1.2 (2021-11-01)
os macOS Monterey 12.1
system aarch64, darwin20.6.0
ui unknown
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/Chicago
date 2022-01-24
pandoc 2.17.0.1 @ /opt/homebrew/bin/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.1.1)
backports 1.4.1 2021-12-13 [1] CRAN (R 4.1.2)
beeswarm 0.4.0 2021-06-01 [1] CRAN (R 4.1.2)
bit 4.0.4 2020-08-04 [1] CRAN (R 4.1.1)
bit64 4.0.5 2020-08-30 [1] CRAN (R 4.1.1)
brio 1.1.3 2021-11-30 [1] CRAN (R 4.1.2)
broom 0.7.11 2022-01-03 [1] CRAN (R 4.1.2)
cachem 1.0.6 2021-08-19 [1] CRAN (R 4.1.1)
callr 3.7.0 2021-04-20 [1] CRAN (R 4.1.1)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.1.1)
checkmate 2.0.0 2020-02-06 [1] CRAN (R 4.1.1)
cli 3.1.1 2022-01-20 [1] CRAN (R 4.1.2)
colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.1)
crayon 1.4.2 2021-10-29 [1] CRAN (R 4.1.1)
data.table 1.14.2 2021-09-27 [1] CRAN (R 4.1.1)
DBI 1.1.2 2021-12-20 [1] CRAN (R 4.1.2)
dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.1.1)
desc 1.4.0 2021-09-28 [1] CRAN (R 4.1.1)
devtools 2.4.3.9000 2022-01-22 [1] Github (r-lib/devtools@41280ac)
digest 0.6.29 2021-12-01 [1] CRAN (R 4.1.2)
dplyr * 1.0.7.9000 2022-01-12 [1] Github (tidyverse/dplyr@0501335)
dtplyr 1.2.1 2022-01-19 [1] CRAN (R 4.1.2)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.1.1)
evaluate 0.14 2019-05-28 [1] CRAN (R 4.1.1)
extrafont * 0.17 2014-12-08 [1] CRAN (R 4.1.1)
extrafontdb 1.0 2012-06-11 [1] CRAN (R 4.1.1)
fansi 1.0.2 2022-01-14 [1] CRAN (R 4.1.2)
farver 2.1.0 2021-02-28 [1] CRAN (R 4.1.1)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.1)
forcats * 0.5.1.9000 2021-11-29 [1] Github (tidyverse/forcats@b4dade0)
fs 1.5.2.9000 2021-12-09 [1] Github (r-lib/fs@6d1182f)
gargle 1.2.0 2021-07-02 [1] CRAN (R 4.1.1)
generics 0.1.1 2021-10-25 [1] CRAN (R 4.1.1)
ggbeeswarm 0.6.0 2017-08-07 [1] CRAN (R 4.1.2)
ggplot2 * 3.3.5 2021-06-25 [1] CRAN (R 4.1.1)
ggpointdensity 0.1.0 2021-11-14 [1] Github (LKremer/ggpointdensity@02f3ab2)
ggrastr 1.0.1 2021-12-08 [1] Github (VPetukhov/ggrastr@7aed9af)
ggtext 0.1.1 2022-01-21 [1] Github (wilkelab/ggtext@50fdaba)
glue 1.6.1.9000 2022-01-23 [1] Github (tidyverse/glue@3da70df)
googledrive 2.0.0 2021-07-08 [1] CRAN (R 4.1.1)
googlesheets4 1.0.0 2021-07-21 [1] CRAN (R 4.1.1)
gridtext 0.1.4 2020-12-10 [1] CRAN (R 4.1.2)
gt 0.3.1.9000 2022-01-17 [1] Github (rstudio/gt@fcabb41)
gtable 0.3.0.9000 2021-10-28 [1] Github (r-lib/gtable@a0bd272)
haven 2.4.3 2021-08-04 [1] CRAN (R 4.1.1)
highr 0.9 2021-04-16 [1] CRAN (R 4.1.1)
hms 1.1.1 2021-09-26 [1] CRAN (R 4.1.1)
htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.1)
htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.1.1)
httr 1.4.2 2020-07-20 [1] CRAN (R 4.1.1)
jsonlite 1.7.3 2022-01-17 [1] CRAN (R 4.1.2)
knitr 1.37.1 2021-12-21 [1] https://yihui.r-universe.dev (R 4.1.2)
labeling 0.4.2 2020-10-20 [1] CRAN (R 4.1.1)
lattice 0.20-45 2021-09-22 [2] CRAN (R 4.1.2)
lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.1)
lubridate 1.8.0 2022-01-20 [1] Github (tidyverse/lubridate@566590f)
magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.1.1)
markdown 1.1 2019-08-07 [1] CRAN (R 4.1.2)
MASS 7.3-55 2022-01-13 [2] CRAN (R 4.1.2)
Matrix * 1.4-0 2021-12-08 [2] CRAN (R 4.1.2)
memoise 2.0.1 2021-11-26 [1] CRAN (R 4.1.2)
modelr 0.1.8.9000 2021-10-27 [1] Github (tidyverse/modelr@16168e0)
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.1)
patchwork * 1.1.0.9000 2021-10-27 [1] Github (thomasp85/patchwork@79223d3)
pillar 1.6.4 2021-10-18 [1] CRAN (R 4.1.1)
pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.1.2)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.1)
pkgload 1.2.4 2021-11-30 [1] CRAN (R 4.1.2)
png 0.1-7 2013-12-03 [1] CRAN (R 4.1.1)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.1.1)
processx 3.5.2 2021-04-30 [1] CRAN (R 4.1.1)
ps 1.6.0 2021-02-28 [1] CRAN (R 4.1.1)
purrr * 0.3.4 2020-04-17 [1] CRAN (R 4.1.1)
R.cache 0.15.0 2021-04-30 [1] CRAN (R 4.1.1)
R.methodsS3 1.8.1 2020-08-26 [1] CRAN (R 4.1.1)
R.oo 1.24.0 2020-08-26 [1] CRAN (R 4.1.1)
R.utils 2.11.0 2021-09-26 [1] CRAN (R 4.1.1)
R6 2.5.1.9000 2021-12-09 [1] Github (r-lib/R6@1b05b89)
ragg 1.2.1.9000 2021-12-08 [1] Github (r-lib/ragg@c68c666)
Rcpp 1.0.8 2022-01-13 [1] CRAN (R 4.1.2)
readr * 2.1.1 2021-11-30 [1] CRAN (R 4.1.2)
readxl 1.3.1.9000 2022-01-20 [1] Github (tidyverse/readxl@2ccb82c)
remotes 2.4.2 2022-01-24 [1] Github (r-lib/remotes@7b0ee01)
reprex 2.0.1 2021-08-05 [1] CRAN (R 4.1.1)
reticulate 1.23 2022-01-14 [1] CRAN (R 4.1.2)
rlang 1.0.0 2022-01-20 [1] Github (r-lib/rlang@f2fbaad)
rmarkdown 2.11.12 2022-01-24 [1] Github (rstudio/rmarkdown@b53a7ce)
rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.1.1)
rstudioapi 0.13.0-9000 2022-01-15 [1] Github (rstudio/rstudioapi@5d0f087)
Rttf2pt1 1.3.9 2021-07-22 [1] CRAN (R 4.1.1)
rvest 1.0.2 2021-10-16 [1] CRAN (R 4.1.1)
sass 0.4.0 2021-05-12 [1] CRAN (R 4.1.1)
scales 1.1.1 2020-05-11 [1] CRAN (R 4.1.1)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.1.2)
stringi 1.7.6 2021-11-29 [1] CRAN (R 4.1.2)
stringr * 1.4.0.9000 2022-01-24 [1] Github (tidyverse/stringr@85f6140)
styler * 1.6.2.9000 2022-01-17 [1] Github (r-lib/styler@9274aed)
systemfonts 1.0.3.9000 2021-12-07 [1] Github (r-lib/systemfonts@414114e)
testthat 3.1.2.9000 2022-01-21 [1] Github (r-lib/testthat@54b9db2)
textshaping 0.3.6 2021-10-13 [1] CRAN (R 4.1.1)
tibble * 3.1.6.9000 2022-01-18 [1] Github (tidyverse/tibble@7aa54e6)
tidyr * 1.1.4 2021-09-27 [1] CRAN (R 4.1.1)
tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.1.1)
tidyverse * 1.3.1.9000 2021-12-08 [1] Github (tidyverse/tidyverse@6186fbf)
tzdb 0.2.0 2021-10-27 [1] CRAN (R 4.1.1)
usethis 2.1.5.9000 2022-01-20 [1] Github (r-lib/usethis@57b109a)
utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.1)
vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.1.1)
vipor 0.4.5 2017-03-22 [1] CRAN (R 4.1.2)
viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.1.1)
vroom 1.5.7 2021-11-30 [1] CRAN (R 4.1.2)
withr 2.4.3 2021-11-30 [1] CRAN (R 4.1.2)
xfun 0.29 2021-12-14 [1] CRAN (R 4.1.2)
xml2 1.3.3 2021-11-30 [1] CRAN (R 4.1.2)
yaml 2.2.1 2020-02-01 [1] CRAN (R 4.1.1)
[1] /opt/homebrew/lib/R/4.1/site-library
[2] /opt/homebrew/Cellar/r/4.1.2/lib/R/library
─ Python configuration ───────────────────────────────────────────────────────
python: /Users/jialei/.pyenv/shims/python
libpython: /Users/jialei/.pyenv/versions/miniforge3-4.10.1-5/lib/libpython3.9.dylib
pythonhome: /Users/jialei/.pyenv/versions/miniforge3-4.10.1-5:/Users/jialei/.pyenv/versions/miniforge3-4.10.1-5
version: 3.9.5 | packaged by conda-forge | (default, Jun 19 2021, 00:24:55) [Clang 11.1.0 ]
numpy: /Users/jialei/.pyenv/versions/miniforge3-4.10.1-5/lib/python3.9/site-packages/numpy
numpy_version: 1.20.3
anndata: /Users/jialei/.pyenv/versions/miniforge3-4.10.1-5/lib/python3.9/site-packages/anndata
NOTE: Python version was forced by RETICULATE_PYTHON
──────────────────────────────────────────────────────────────────────────────